
Abstract. In this overview I discuss recent advances as
well as outstanding issues in reduced dimensionality
quantum approaches to reactive scattering. ‘‘Reduced
dimensionality’’ in the present context signifies treating a
subset of all degrees of freedom (the most strongly
coupled ones) by rigorous quantum methods and treat-
ing the remaining (weakly coupled) degrees of freedom
by a variety of approximate methods, ranging from
simple, so-called energy shifts to more elaborate adia-
batic treatments. The most widely used example of this
approach is termed ‘‘J-shifting’’, and this overview will
concentrate on this method and discuss its application
and generalization to both ‘‘direct’’ and ‘‘complex’’
reactions, exemplified by O(3P) + HCl and O(1D) +
HCl, respectively. In addition, for O(3P) + HCl, reso-
nances in the tunneling region, due to van der Waals
wells, are discussed and their challenge to reduced di-
mensionality methods is stressed. Another new aspect of
the reduced dimensionality treatment of polyatomic re-
actions is the need to describe anharmonicity in a con-
sistent fashion. This is exemplified by the H + CH4

reaction.
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1 Introduction

There has been dramatic progress in doing quantum
reactive scattering calculations for three-atom and some
four-atom reactions [1, 2, 3, 4]. Codes for doing such
calculations are freely available using both time-inde-
pendent [5] and time-dependent methods [6]. The most
widely used time-independent methods are based on
coupled-channel representation(s) of the wavefunction.
This results in a large set of coupled, second-order

differential equations, the solutions to which yield the
entire state-to-state scattering matrix at a given total
energy. Time-dependent approaches generally are for-
mulated on grids, and the scattering matrix is obtained
for a range of energies; however, for a single initial state.

Depending on the particular application one method
has advantages over the other; however, both methods
scale exponentially with the number of degrees of free-
dom, and so these exact methods have been limited
to triatomic and some tetraatomic systems. (For the
specific calculation of the thermal rate constant the
situation is less bleak, as discussed later.) There is an
additional scaling with overall rotation. This latter
scaling is essentially independent of the number of
internal degrees of freedom, but it is quite significant
nevertheless. An exact treatment of overall rotation
scales nonlinearly with the total angular momentum
quantum number J [as much as O(J6)]. In favorable
cases, this scaling occurs only for low values of J and
then becomes constant for larger J values. Thus, for
observables, such as the reaction cross section and rate
constant, for which values of J up to several hundred
or more are typical, this results in a huge increase in
computational effort relative to a J ¼ 0 calculation.

Faced with this unfavorable scaling, we and others
have developed approximate, so-called reduced dimensi-
onalitymethods that scalemuch less drasticallywith J and
the number of internal degrees of freedom. The basic ap-
proach taken in these methods is to treat a subset of all the
degrees of freedom (the most strongly coupled ones) by
rigorous quantum methods and to treat the remaining
(weakly coupled) degrees of freedom by a variety of ap-
proximate methods, ranging from simple, so-called energy
shifts to more elaborate adiabatic treatments. Further, a
useful distinction is made between the 3N–6 internal
degrees of freedom and the three rotational degrees of
freedom. These approaches have been reviewed over the
years [7, 8, 9, 10, 11, 12] and so this review will focus on
new tests and challenges for these types of approxima-
tions. Also, although these approximation methods apply
to all observables, the emphasis here is on the thermal rate
constant, k(T).
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In the next section I review recent applications, tests
and further developments in dealing with the J-scaling
for two quite challenging reactions, O(3P) + HClfi
OH + Cl and O(1D) + HClfi OH + Cl, ClO + H.
Following that, I review recent reduced dimensionality
quantum calculations of k(T) for the H + CH4

reaction and comparisons with full dimensionality
calculations (which used J-shifting). I also discuss the
importance of an appropriate treatment of the reactant
vibrational partition function in full and reduced
dimensionality methods. I summarize with some
comments on challenges to reduced dimensionality
methods.

2 The thermal rate constant

The thermal rate constant for a bimolecular reaction can
be written as

k Tð Þ ¼ 1

hQreact Tð Þ

Z1

0

dEN Eð Þe�E=kBT ; ð1Þ

where E is the total energy, Qreact is the reactant
partition function, and N(E) is the cumulative reaction
probability (CRP). N(E) is given exactly by

N Eð Þ ¼
X
i

X
f

X
J¼0

2J þ 1ð Þ
XJ

KK 0¼�J

P J ;K;K 0

i!f ; ð2Þ

where PJ
i!f is the exact state-to-state (i to f) reaction

probability for a given value of the total angular
momentum J, and K (K¢) are initial (final) values of
the body-fixed projection quantum number of J. For
further use it is convenient to rewrite N(E) as

N Eð Þ ¼
X
J¼0

2J þ 1ð ÞNJ Eð Þ; ð3Þ

where NJ(E) is just the sum over i, f, K and K¢ of the
state-to-state reaction probability.

Clearly an exact calculation of N(E) is equivalent to
an exact solution of the Schrödinger equation, and the
summations in Eq. (2) may involve thousands of terms.
As emphasized by Miller and coworkers, it would be
highly desirable to formulate a theory in which N(E)
could be obtained exactly and directly, i.e., without
having to obtain the detailed state-to-state probabilities.
That goal has been attained brilliantly by Miller and
coworkers [13, 14]. This is a great advance; however, the
exact calculation of N(E) is still challenged by the
unfavorable scaling with J, and so approximations for
this scaling are still needed.

I review two approximations to deal with the J-
scaling problem and present applications and tests of
these approximations to two quite different reactions,

O(3P)+ HClfi OH + Cl and O(1D) + HClfi OH
+ Cl, ClO + H. The first reaction is an example of a
‘‘direct’’ reaction (although a very challenging one), and
the second is an example of a ‘‘complex’’, barrierless
reaction.

3 J-shifting and adiabatic rotation approximations

The simplest reduced dimensionality quantum theory of
reactive scattering is one in which a subset of degrees
of freedom is treated rigorously while the remaining
degrees of freedom are treated by standard (separable)
transition-state theory (TST) [7, 8]. This results in simple
energy-shift approximations to treat the degrees of
freedom not treated dynamically. In the case of the
rotational degrees of freedom, this approximation
amounts to first making the (sufficient) assumption that
K is a good quantum number and thus

NJ Eð Þ ¼
XJ
K¼�J

NJ ;K Eð Þ; ð4Þ

and then approximating NJ,K(E) as

NJ ;K Eð Þ 	 NJ¼0 E � EzJ ;KÞ;
�

ð5Þ

where NJ ¼ 0(E) is the exact CRP for J ¼ 0 and EzJ ;K is
the rotational energy of the TS, for example, for a
symmetric top

EzJ ;K ¼ �BBzJ J þ 1ð Þ þ Az � �BBz
� �

K2: ð6Þ

Equation (5) is known as J-shifting, and it has become
fairly widely used because it greatly simplifies the
calculation of the thermal rate constant compared to
an exact (or other approximate) treatment of overall
rotation. It is easily shown that the rate constant that
results from J-shifting is

k Tð Þ ¼ kJ¼0 Tð ÞQzrot Tð Þ; ð7Þ

where Qzrotis the rotational partition function of the TS
and

kJ¼0 Tð Þ ¼ 1

hQreact Tð Þ

Z1

0

dENJ¼0 Eð Þe�E=kBT : ð8Þ

J-shifting for the thermal rate constant has been shown
to be accurate to 10–30% for direct reactions, i.e.,
reactions with a barrier much larger than kBT [15, 16].
(A modification of Eq. 7 is necessary for reactions with a
linear TS to account for the fact the odd bending states
of the TS are not accounted for in a J ¼ 0 calculation.
The simplest modification, in the spirit of reduced
dimensionality theory, is to multiply the right-hand side
of Eq. 7 by a partition function containing the odd-
numbered bending states. More sophisticated approaches
are also possible as reviewed elsewhere [8], and also
see later.) A very recent, rigorous test for O(3P) + HCl
is presented in the next section.

As already stated, J-shifting results from using
separable TST to describe overall rotation. It is
possible to describe some interaction between rotation
and vibration of the TS. To see how this can be done,
we need only continue with the assumption of TST
that NJ,K(E) can be written in terms of quantized TSs
as follows:
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NJ ;K Eð Þ ¼
X
i¼0

NJ ;K
i Eð Þ; ð9Þ

where the sum over i refers to the vibration/bending
states of the TS. For example, i ¼ 0 refers to the zero-
point state of the TS. (There is convincing evidence from
a variety of exact calculations that supports the concept
of quantized TSs [17, 18], and so this assumption is on
firm ground.) On the basis of Eq. (9) a generalized
J-shifting approximation [19] can be made for each
quantized TS, i.e.,

NJ ;K
i 	 NJ¼0

i E � EzJ ;K;i
� �

; ð10Þ

where, for example EzJ ;K;iis still given by Eq. (6) but now
the TS rotation constants are state-dependent.

Of course it is not obvious how to obtain these state-
dependent rotation constants since, unlike the usual,
separable rigid-rotor ones, vibration/rotation coupling
of the TS must be included in the analysis of the TS
vibration/rotation energies. We have done this for
the OH + H2 reaction [19], using the code, ‘‘MULTI-
MODE’’, which we developed with Carter [20, 21]. This
code does calculations of coupled ro-vibrational states of
polyatomic molecules, including saddle points. The po-
tential used [22] in these calculations (which has since
been superceded by more accurate ones) has a relatively
‘‘floppy’’ TS which resulted in strong vibration/rotation
coupling and a significant variation of the rotation
constants with a quantized TS. This in turn resulted in
the thermal rate constant being reduced by roughly
20 % relative to the standard J-shifting result. This
relatively large effect of vibration/rotation coupling is
not typical.

Finally, it should be noted that J-shifting can be done
using a CRP for J greater than zero [15, 23, 24, 25]. This
requires more computational effort of course than
J-shifting based on NJ ¼ 0; however, as expected the
resulting rate constant is more accurate.

4 Adiabatic rotation approximation and a generalization
of J-shifting

For reactions that proceed via complexes and with no
potential barrier(s), it appears that standard J-shifting
is not applicable, since no TS exists on the potential.
However, rotational barriers do form on the effective
potential, i.e., the sum of the potential plus the
rotational energy. These barriers define a TS; however,
one that may shift considerably in configuration with
the total energy and with J. The existence and
importance of these effective barriers is well known,
and they play a central role in approximate dynamical
and statistical models of unimolecular and bimolecular
reactions [26, 27, 28]. These models treat the dynamics
approximately, and it is clearly desirable to have a
method that is based on quantum dynamics but which
incorporates rotational energy barriers in the spirit of
J-shifting.

An important step in this direction is the ‘-shifting
model of Gray et al. [29], which was developed for
and applied to the O(1D) + H2(v ¼ 0, j ¼ 0) reaction. In

this method quantum reaction probabilities for nonzero
orbital angular momentum ‘ were related to exact ones
for ‘ ¼ 0 using an expression like Eq. (5); however, with
J replaced by ‘. This was justified for the specific case of
H2(v ¼ 0, j ¼ 0) because in this case ‘ ¼ J. The value of
the rotation constant used in the energy-shifting depends
on ‘, because the location of the barrier on the effective
potential depends on ‘. This model is applicable for
describing rotational barriers in the entrance channel of
a reaction, and for a reactant diatomic in the ground
rotational state. In the case that these barriers determine
the overall reactivity, as in the case of O(1D) + H2, the
model is quite reasonable.

In the general case where the reactant diatomic is
rotationally excited and/or where there are multiple
product channels, the ‘-shifting model needs to be gen-
eralized. We have proposed such a generalization [30]
based on the adiabatic rotation approximation [31, 32,
33, 34]. In this approximation the rotational energy of
the collision system is calculated at a given configura-
tion, and the resulting (adiabatic) rotational energy is
added to the electronic potential to form the effective
potential. This treatment of overall rotation can be
combined with the exact Hamiltonian for zero total
angular momentum to obtain an approximate Hamil-
tonian for J greater than zero, given by

HJ ;K ¼ HJ¼0 þ EJ ;K Qð Þ; ð11Þ
where Q represents the collection of internal coordinates
and HJ ¼ 0 is the exact Hamiltonian for zero total
angular momentum. Scattering calculations can be done
for each J and K and, for example, the partial wave
CRP, NJ,K(E), can be obtained from these calculations.

For example, consider a triatomic reaction
A + BCfiAB + C, AC + B, and for simplicity as-
sume a prolate symmetric top approximation so that K is
a good quantum number. (This applies for reactions of
the type X + HY, where X and Y are not hydrogen
atoms.) Then, in standard Jacobi coordinates (R the
distance of A to the center of mass of BC, r the BC
internuclear distance and c the angle between the vectors
R and r) the adiabatic rotational energy is given by

EJ ;K Ra; ra; cað Þ ¼ �BB Ra; ra; cað ÞJ J þ 1ð Þ

þ A Ra; ra; cað Þ½ ��BB Ra; ra; cað Þ�K2; ð12Þ

where a denotes an arrangement channel and the
rotation constants A(Ra,ra,ca) and �BB Ra; ra; cað Þ (the
average of the B and C rotation constants) are functions
of the coordinates. Adding this rotational energy to the
potential V(Ra,ra,ca) gives effective potentials in the three
arrangement channels,

V J ;K
eff;a

Ra; ra; cað Þ ¼ V Ra; ra; cað Þ þ EJ ;K Ra; ra; cað Þ: ð13Þ

Note that in this expression K is the spectroscopic
quantum number, Ka, i.e., the projection quantum
number on the a-axis, and thus the rotational energy is
independent of the choice of arrangement channel
coordinates.
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Dynamics calculations using this effective potential
have been done and very good results have been ob-
tained [35, 36]; however, they are still quite computa-
tionally intensive. Clearly, these effective potentials can
be used to determine the properties of rotational barriers
as a function of J and K, and this forms the basis of the
generalization of the J-shifting model [30], as illustrated
for the O(1D) + HCl reaction later. In brief, the method
recognizes that barriers exist owing to the rotational
motion in the various arrangement channels. From the
characteristics of these barriers (including the zero-point
energy) it is straightforward to determine which barrier
controls a given reaction, a to b, for a given value of the
total energy, J and K. Then, denoting the energy of the

relevant, controlling barrier by Ezab
J ;K , the generalized

J-shifting approximation for the CRP for the reaction
is given by

NJ ;K
a!b Eð Þ 	 NJ¼0

a!b E � Ezab
J ;K

� �
; ð14Þ

J- and K-shifting can also be used to estimate initial
state-selected cross sections to form a given product. For
example, for initial rotational states with K ¼ 0 the cross
section can be estimated using the expression

rvj Eð Þ ¼ p

k2
vj

X
j¼0

2J þ 1ð ÞPJ¼0
vj E � EzJ ;K¼0

� �
; ð15Þ

where PJ¼0
vj is the initial state-selected reaction proba-

bility to form a given product (for simplicity we drop the
a,b notation) and kvj is the wavenumber. Degeneracy-
averaged cross sections can also be estimated using J-
and K-shifting; however, in this case the minimum value
of J for an exact calculation has to be J ¼ K and then
energy shifting is done relative to that value of J.

Finally, note that in general there will be minimum
values of J and K where a positive energy barrier on the
effective potential exists. For J and K less than these
minimum values no energy shifting is done in Eq. (15).

Next I present an application and rigorous test of the
standard J-shifting method to the ‘‘direct’’ reaction
O(3P) + HCl fi OH + Cl. This reaction is quite chal-
lenging owing to the presence of low-energy resonances.
Generalized J-shifting is illustrated by the ‘‘complex’’
reaction O(1D) + HCl fi OH + Cl, ClO + H.

5 O(3P) + HCl: example of a ‘‘direct’’ reaction

The O(3P) + HCl reaction has been widely studied
quantum mechanically over the past decade [15, 16, 37,
38, 39, 40, 41, 42]. Most of these calculations were done
using the potential of Koizumi et al. [37] (KSG), and
until 1998 these quantum calculations made use of some
version of J-shifting to obtain the thermal rate constant.

Very recently two groups [41, 42] reconsidered the
quantum dynamics of this reaction using the KSG po-
tential and a newer potential of Ramachandran et al.
(denoted S4) [43]. Unlike the KSG potential this newer
surface contains a van der Waals well in both the
entrance and exit channels. The quantum scattering
calculations (which were done for zero total angular

momentum) found prominent resonances in the CRP at
energies below the ground-state vibrationally adiabatic
barrier (0.54 eV). Such resonances were not seen using
the KSG potential and this led to the speculation that
these low-energy resonances were due to the presence of
the van der Waals well(s). Standard J-shifting (Eqs. 7, 8)
was done to obtain the thermal rate constant, which was
(surprisingly) in very good agreement with that obtained
using the KSG potential, even though the ground-state
adiabatic barrier on S4 is 1.3 kcal/mol higher than
on KSG.

This surprising result clearly called for further in-
vestigation to determine if standard J-shifting might be
inaccurate for a reaction with low-energy resonances.
This was done in very recent work where resonances
were further investigated using exact quantum scattering
calculations (using the code ABC [6]) and also quasi-
bound state calculations [44]. Exact and standard
J-shifting calculations of the CRP were done to inves-
tigate the J dependence of these resonances. These cal-
culations were done for J up to 100 in order to obtain
the exact rate constant.

The CRP for zero total angular momentum is plotted
in Fig. 1 versus the total energy, E. The barrier height
of the S4 potential is 0.424 eV, measured relative to
O(3P) + HCl(re), and the (harmonic) ground-state adi-
abatic barrier height is 0.536 eV. Thus, the calculations
are focused in the tunneling region of this reaction,
where nine resonances are clearly seen. These resonances
have been carefully characterized and assigned to
quasibound states of van der Waals wells in either the
entrance or exit channel [44].

The shift of resonance, r, with J and K can be pre-
dicted by J-shifting, which for this reaction is given by
the prolate top expression, where the rotation constants

Fig. 1. Semilogarithmic plot of the cumulative reaction probability
for zero total angular momentum for the O(3P) + HCl reaction
versus the total energy, E, in the tunneling region. The peaks
numbered 1–9 correspond to quasibound states of the van der
Waals minima, as explained in the text
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could either be determined numerically by fitting the
exact resonance energy [45] or approximated by the TS
values. To check this prediction consider the exact CRP
for J ¼ 1 for the even and odd parity states; these are
plotted in Fig. 2. As seen, there are clear resonance
structures for the two parities, and both sets of reso-
nances shift to higher energies relative to the J ¼ 0 re-
sults, as expected from J-shifting. The P ¼ 1 resonances
are single peaks, but the narrow resonances for P ¼ )1
clearly split into doublets. The broad resonances for
P ¼ )1 are also doublets, which because they overlap
are not clearly resolved. These detailed features of the
resonances can be rationalized using a J-shifting argu-
ment. For J ¼ 1 and P ¼ 1, only K ¼ 1 contributes to
the CRP, but for P ¼ )1, both K ¼ 1 and 0 contribute.
Thus, the P ¼ )1 CRP shows doublet behavior owing to
the contributions of two K values. Thus, at least quali-
tatively the shift in the J ¼ 1 resonances is given cor-
rectly by J-shifting. The exact shifts in the resonance
positions can be used to numerically determine A and B.

This was done and the agreement with TS rotation
constants was only semiquantitative [44].

The exact and J-shifting CRPs, summed over J and K
are compared in Fig. 3. The average relative error of the
J-shifting CRP over the energy range shown is 19%,
although the agreement deteriorates to around 30% at
higher energies. The corresponding exact and J-shifted
thermal rate constants were calculated using the CRPs
shown in Fig. 3, and the approximate one was found to
be on average 30 % higher than the exact result over the
temperature range 200–800 K. Thus, the J-shifting cal-
culation, which took roughly 104 times less computation
time than the exact calculation, does provide a very
useful and reliable level of accuracy for this challenging
reaction. It should be noted though that other reduced-
dimensionality approximations which make further ap-
proximations to obtain the J ¼ 0 CRP do not give a rate
constant in good agreement with either the exact result
or the J-shifted one for this reaction [46]. These methods
significantly underestimate the degree of tunneling and it
is not completely clear why this is so. One speculation
was that the van der Waals wells cause significant non-
adiabatic coupling between the bending mode of the
triatomic reaction system and the two stretching modes.
This coupling is captured in an exact J ¼ 0 calculation
but is absent in adiabatic treatment(s) of the bend.

6 O(1D) + HCl: example of a ‘‘complex’’ reaction

The O(1D) + HCl fi ClO + H, OH + Cl, reaction is
described by a potential without barriers but with two
deep minima corresponding to HOCl and HClO. These
minima are expected to result in ‘‘sticky’’ collisions,
and for this reason the reaction is termed complex. For
such reactions, the computational challenges are even
greater than those for direct reactions, because the

Fig. 2. Semilogarithmic plot of the cumulative reaction probability

for J ¼ 1 and the two parities, P, indicated for the O(3P) + HCl
reaction versus the total energy, E, in the tunneling region

Fig. 3. Comparison of exact and J-shifting full cumulative reaction
probability versus the total energy, E, for the O(3P) + HCl
reaction
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wavefunctions are highly oscillatory owing to the
complex regions, and many initial states contribute to
the CRP. Even direct methods to obtain the CRP [13]
become of comparable difficulty to those that do an
explicit sum of initial state-selected probabilities for such
reactions because of the absence of a substantial
potential barrier that limits the reactive flux. Thus, the
need for some kind of J-shifting is perhaps even more
compelling than for direct reactions. However, complex-
forming reactions present new challenges to J-shifting
approaches, precisely owing to the absence of a potential
barrier. Thus, generalizations of J-shifting are necessary
for this class of reaction, and our efforts to do this,
motivated by a study of the O(1D) + HCl reaction, are
described next.

Global potential-energy surfaces, based on ab initio
calculations, and subsequent quasiclassical trajectory
and quantum wavepacket calculations for this reaction
have been reported by two groups [30, 47, 48, 49, 50, 51].
A sketch of the energetics of the various minima and
reaction channels is given in Fig. 4. Very roughly the
OH + Cl product correlates with the HOCl minimum,
while the ClO + H product correlates with HClO
minimum; however, the energy of the reaction is above
the barrier separating these minima, and so ‘‘isomer-
ization’’ between these two minima undermines the
correlation of a given minimum to a given reaction
channel.

The exact CRP for each product was calculated [30,
47, 48, 49] using the wavepacket code of Gray and
Balint-Kurti [52] for J ¼ 0. These CRPs were obtained
by summing initial state-selected reaction probabilities
for HCl (v ¼ 0,j) for j between 0 and 16. The resulting
CRPs (for the two reaction products) are plotted versus
the total energy in Fig. 5, where as seen the OH product
dominates over the ClO by about a factor of 2.5. As seen
the CRPs are oscillatory; this is a direct consequence of
the complex dynamics in this reaction owing to the deep
minima in the potential.

The effect of overall rotation on the reaction was
determined by calculating the effective potentials for
many values of J and K using the adiabatic rotation
approximation, i.e., by Eqs. (12) and (13). The details of
the calculations and contour plots of effective potentials
are given elsewhere [30, 48, 49]. The resulting barriers

are shown schematically, but realistically, in Fig. 6.
Three barriers are indicated, but only two control the
reaction dynamics, i.e., the entrance channel barrier
controls the very exoergic reaction pathway to form
OH + Cl and the ClO + H barrier controls the slightly
exdoergic pathway for ClO + H.

As an example of using generalized J-shifting, the
cross sections to form the two products for HCl
(v ¼ j ¼ 0) were calculated using Eq. (15). These cross
sections are not exact, and in order to make some as-
sessment of their accuracy we also performed standard
quasiclassical trajectory calculations (QCT) of these
cross sections [49]. (Unfortunately exact quantum cal-
culations of these cross sections are not feasible for us.)
Of course QCT calculations are also not exact, and so
some assessment of their accuracy is desirable. This
can be done by comparing QCT and exact quantum

Fig. 4. Energetics (eV) for the O(1D) + HCl reaction

Fig. 5. Quantum cumulative reaction probabilities for zero total
angular momentum for the O(1D) + HCl reaction versus the total
energy, E

Fig. 6. Schematic of effective potentials for nonzero angular
momentum for the O(1D) + HCl reaction
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calculations for J ¼ 0. This is done in Fig. 7, where the
reaction probabilities for HCl(v ¼ j ¼ 0) to form each
product are plotted against the initial relative transla-
tional energy. As seen, there is good agreement for the
ClO channel; however, for the OH channel the two sets
of probabilities are only in average agreement. Note
especially that for Etrans ¼ 0.20 eV the QCT results are
uniformly too large by 30 % or more. Keeping in mind
the rigorous test of the accuracy of the QCT calculations
for J = 0, consider the comparison of the QCT and
approximate cross sections shown in Fg. 8. As seen, the
qualitative behavior of the QCT and approximate
quantum cross sections is very similar. For both prod-
ucts, the two sets of computed cross sections decrease
with increasing translational energy, as expected for a
reaction with no potential barrier. For the ClO channel
the agreement between the QCT and approximate
quantum cross sections is quite good; however, not as
good as for the OH + Cl channel. This is consistent
with the comparisons shown for J ¼ 0, where the
quantum calculations are exact. Thus, it appears that
much of the disagreement between the approximate
quantum and QCT cross sections for OH is due to errors
in the QCT method. However, one must be cautious
here since the J)K-shifting approximation introduces
some errors as well.

To conclude this section, note that the rate constants
for each product calculated with the J)K-shifting
approximation are in good agreement with experiment,
showing a very slight temperature dependence over the
experimental range 200–400 K [30].

7 H + CH4

To conclude the body of this overview, consider the
H + CH4 fi H2 + CH3 reaction. This is a direct

reaction with 12 internal degrees of freedom and a large
barrier to reaction. The first quantum calculations of
this reaction were done using reduced dimensionality
approaches for internal degrees of freedom. In brief, in
this approach energy-shift approximations are made to
obtain an approximate J ¼ 0 CRP, NJ ¼ 0(E). Thus if
NJ ¼ 0,rd(E) denotes a reduced dimensionality CRP for
J ¼ 0, then the full dimensionality J ¼ 0 CRP is given
approximately by [8, 9]

NJ¼0 Eð Þ ¼
X
v0

NJ¼0;rd E � Ezv0
� �

; ð16Þ

where v¢ represents vibrational quantum numbers of
the degrees of freedom not included in the quantum

calculation, and Ezv0 are the TS vibrational energies
corresponding to these degrees of freedom. (This
procedure for H + CH4 is discussed in more detail
later.)

The first such reduced dimensionality quantum cal-
culations of this reaction were done by Takayanagi [53],
who considered three degrees of freedom, the CH stretch
in CH4, the initially unbound CH stretch, and a spec-
tator coordinate representing the CH4 umbrella mode.
Subsequent to that calculation, Yu and Nyman [54] did
quantum calculations with an additional degree of
freedom, the local-mode CH bend in CH4. The thermal
rate constants obtained from these three and four-
degrees-of-freedom reduced dimensionality calculations
were generally in good agreement with each other, ex-
cept at temperatures between 300 and 400 K, where the
four-degrees-of-freedom calculation of the rate constant
was above the three-degrees-of-freedom one by about a
factor of 2.

Two time-dependent wavepacket calculations have
been reported for this reaction. The first one, by Wang
et al. [55], was done in four degrees of freedom using the
semirigid vibrating rotor target model. These calcula-
tions were done for the ground rotational state of CH4,

Fig. 7. Comparison of J ¼ 0 quantum mechanical (QM) and
quasiclassical trajectory (QCT) reaction probabilities for the
O(1D) + HCl (v ¼ j ¼ 0) reaction versus the initial relative
translational energy, Etrans

Fig. 8. Comparison of J-shifting QM and QCT cross sections
for the O(1D) + HCl (v ¼ j ¼ 0) reaction versus initial relative
translational energy, Etrans
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and so the rate constant obtained cannot rigorously be
directly compared to experiment, where the rate con-
stant is thermally averaged over initial states. More re-
cently we reported a six-degrees-of-freedom wavepacket
calculation [56], using the atom–triatom scattering code
of Zhang et al. [57]. This calculation used energy shifting
for the remaining six degrees of freedom and J-shifting
to obtain k(T). The identification of the remaining
modes is not necessarily straightforward. We were able
to do this for H + CH4 by comparing the eigenvectors
of the normal modes of the full and reduced dimensio-
nality TS[53].

All of these reduced dimensionality quantum calcu-
lations (except the ones by Zhang and coworkers) ob-
tained the CRP by first calculating either state-to-state
or initial state-selected reaction probabilities and then
summing over these to obtain the CRP. A direct calcu-
lation of the J ¼ 0 CRP was recently reported in full
dimensionality by Huarte-Larranaga and Manthe [58].
This benchmark calculation allowed a direct test of the
various approximate, reduced dimensionality methods,
either at the level of a direct comparison of the J ¼ 0
CRP or by a comparison of the thermal rate constant,
where all methods used J-shifting. The comparison of
rate constants was done by Huarte-Larranaga and
Manthe [58], who found large differences between their
rate constant and those from the three- and four-
degrees-of-freedom calculations over the temperature
range of their calculation, which was 200–500 K. In their
calculation of k(T) the normal-mode harmonic approx-
imation for the vibrational partition function of CH4

was used. Subsequently, it was pointed out that the exact
full vibrational partition function should have been
used, consistent with the exact treatment of the CRP [59,
60]. When this partition function is used instead of the
harmonic one, the rate constant is reduced by factors of
1.5–3.0 over the previously mentioned temperature
range, resulting in much improved agreement with the
various reduced dimensionality calculations. For CH4

the difference in the exact (for the potential used) and
harmonic zero-point energy is )0.475 kcal/mol, which is
much larger than RT over this temperature range. Thus,
the importance of anharmonicity in the vibrational
partition function, especially of larger molecules, must
be taken into account, at least when doing ‘‘exact’’
calculations. (However, see later for further comments
on this point for approximate calculations.)

The H + CH4 reaction is perhaps the first one to
focus clearly on the issue of anharmonicity of the reac-
tant vibrational partition function in rigorous calcula-
tions of the rate constant. It also raised some subtle
questions about what is the appropriate vibrational
partition function to use in reduced dimensionality cal-
culations. To summarize the discussion of this point and
a tentative suggestion given in detail elsewhere [56], the
issue revolves around what method is used to obtain the
vibrational energies of the TS to be used in energy-
shifting, see Eq. (16). If these energies are calculated in
the usual normal-mode, harmonic approximation, then
the corresponding vibrational energies of the reactant
molecule should also be calculated using this approxi-
mation. This suggestion is at least a consistent one, and

assumes that there will be some cancellation of errors by
using the same approximation for the reactant and the
TS. (Recall that in TST it is the difference in the vibra-
tional energies of the TS and the reactant that matters.)

Having sorted out some of these issues between
‘‘exact’’ and reduced dimensionality calculations for this
reaction, it should be noted that the various rate con-
stants calculated are in good agreement with each other,
but are not in agreement with experiment. This is clearly
due to a deficiency in the global potential used [61]. Very
recently Pu and Truhlar [62] reported a direct-dynamics
calculation of the rate constant and obtained good
agreement with experiment. They used a method that
treats all degrees of freedom, except a multidimensional
reaction coordinate, adiabatically, using a harmonic
approximation for these energies and also for the CH4

vibrational energies. They tested this method against the
full dimensional calculations, which used anharmonic
coupled CH4 vibrational energies [59] and found very
good agreement [63]. This is a verification of the con-
sistency suggestion made earlier, i.e., that a harmonic
treatment of reactive modes is consistent with using a
harmonic treatment of the reactant vibrations.

8 Summary

I have reviewed several aspects of reduced dimensional-
ity approaches to quantum reactive scattering. J-shifting
and generalizations of it were focused on as these
approximations apply to exact scattering calculations
done for J ¼ 0. Such calculations are now routine
for general three-atom reactions (on a single potential-
energy surface) and will soon be routine for direct
calculations of the CRP for direct reactions of tetra-
atomic reactions and even bigger reactions, such as
H + CH4, in favorable cases.

The J-shifting approximation was illustrated and
tested for the direct O(3P) + HCl reaction and was
found to be accurate for the thermal rate constant to
within 30% over the temperature range 200–800 K. In-
teresting, low-energy resonances, due to van der Waals
wells, were found in exact calculations. The wells were
implicated in the failure of less exact reduced dimensi-
onality calculations that assume adiabaticity in one or
more internal degrees of freedom. This is an area for
more research for these adiabatic-based theories.

Generalized J-shifting was applied to the complex,
barrierless reaction O(1D) + HCl and one application
of this approximation to the reaction cross sections to
form the two products, OH and ClO, was presented
along with quasiclassical trajectory results. Both sets of
calculations predict the dominance of the OH product
over ClO. However, the quantitative agreement between
the approximate quantum and trajectory cross sections
was only fair for the OH product, with the QCT results
about 50% larger than the quantum ones. Better
agreement was found for the ClO product.

The importance of treating the vibrational partition
function of CH4 in the H + CH4 reaction consistent with
the level of dimensionality reduction was discussed. This
will be important for full and reduced dimensionality
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calculations of reactions with CH4 [64, 65, 66, 67] and will
become an increasingly important point as the field
moves to the study of reactions involving polyatomic
molecules.
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